JOM 23850

→ 024

Organische Synthesen mit Übergangsmetall-Komplexen

LXV *. Aldehyde durch Hydrolyse der M=C-Bindung von Alkoxycarben-Chromkomplexen mit Wasser/Urotropin. Ein zweikerniger verbrückter (β -Amino)vinylcarben-Chromkomplex durch Fragmentierung von Urotropin

Rudolf Aumann^a, Peter Hinterding^a, Carl Krüger^b und Richard Goddard^b

^a Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, D-48149 Münster (Deutschland) ^b Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim / Ruhr (Deutschland)

(Eingegangen den 7. Mai 1993)

Abstract

The Cr=C bonds of aryl- and alkenyl(ethoxy)carbene chromium complexes 1a-d are hydrolysed under mild reaction conditions with high chemoselectivity in presence of hexamethylenetetramine (urotropine), 2, to give aldehydes 4a-d and (urotropine)Cr(CO)₅, 3. The alkynyl(ethoxy)carbene chromium complex 1e reacts with urotropine in a completely different fashion and forms a binuclear (β -amino)vinylcarbene complex, 5, by fragmentation of the urotropine skeleton.

Zusammenfassung

Die Cr=C-Bindung von Aryl- bzw. Alkenylcarben-Chromkomplexen 1a-d wird unter milden Bedingungen mit hoher Chemoselektivität in Gegenwart von Hexamethylentetramin (Urotropin), 2, hydrolysiert, wobei Aldehyde 4a-d und (Urotropin)Cr(CO)₅, 3, entstehen. Anders als bei 1a-d bildet sich bei der Reaktion des Alkinyl(ethoxy)carben-Komplexes 1e mit Urotropin ein zweikerniger (β -Amino)vinylcarben-Komplex, 5, durch Fragmentierung des Urotropin-Gerüsts.

1. Einleitung

Fischer-Carbenkomplexe werden in letzter Zeit immer häufiger als Reagentien für organische Synthesen eingesetzt. Dabei gewinnen Verfahren zur Spaltung von M=C-Bindungen zunehmend an Bedeutung, mit deren Hilfe aus einem Metall-Komplex nach erfolgter Transformation des Liganden ein organisches Produkt erhalten wird. Neben Liganden-Übertragungen unter Bildung von C,C- aus M=C-Bindungen (z.B. durch Additions/Eliminierungs-Reaktionen, Ringschluß und/ oder Metathesen) gibt es auch mehrere Möglichkeiten zur Umwandlung von M=C- in polare C,X-Bindungen (X = O, S, Se, NR). Die Standard-Verfahren bestehen in der Oxidation von M=C-Bindungen (M = Cr, W, Mn, Fe) durch Ce(IV) [2], DMSO [3], $KMnO_4$ [4], Pyridin-N-oxid [5], Luft [6a], Schwefel [6a], Selen [6a], Kieselgel / Luft [6b] oder Kieselgel / Schwefel [6b] u.a.. Dadurch werden Fischer-Carbenliganden gewöhnlich in Carbonsäure-Derivate übergeführt: als Nebenreaktionen machen sich gelegentlich Cyclisierungen und/ oder Hydrolysen bemerkbar [6b.c]. Hydrolysen von M=C-Bindungen als solchen, namentlich von Cr=C-Bindungen wurde bisher anscheinend nur wenig Aufmerksamkeit gewidmet. Dennoch liegt ihr potentieller Nutzen auf der Hand; vor allem dann, wenn es gelingt, unerwünschte Redox-Reaktionen zu unterdrücken, so daß Aldehyde oder Aldehyd-Derivate entstehen, die im Hinblick auf weitere Derivatisierun-

Correspondence to: Dr. R. Aumann.

^{*} LXIV. Mitteilung siehe Ref. 1.

^{**} Herrn Prof. Dr. Dr. h.c. mult E.O. Fischer zum 75. Geburtstag gewidmet.

gen oft wünschenswertere Produkte darstellen als Carbonsäure-Derivate.

$$\begin{array}{c} (CO)_5 Cr = \begin{pmatrix} OEt & + H_2O(D_2O) \\ + URO & - EtOH \\ 1 & 2 & 3 & 4 \\ \\ URO = Urotropin & a 90\% \\ 1,3: R = Ph (a), CH=CHPh (b), & c 91\% \\ C_4H_3S (c), CH=CHC_4H_3S (d), & d 90\% \\ C=CPh (e) & e - \\ \end{array}$$

Wir berichten über ein effizientes Verfahren zur Hydrolyse von Cr=C-Bindungen von Fischer-Carbenkomplexen 1 in THF/H₂O mit Urotropin. Dabei entstehen aus **1a-d** die Aldehyde **4a-d** mit guten Ausbeuten, und der Metallrest wird als (Urotropin)Cr-(CO)₅, 3, gebunden. Die Hydrolyse der Cr=C(OEt)-Einheit erfolgt unter fast neutralen und recht milden Bedingungen mit hoher Chemoselektivität bei 20°C.

$$H_{2}O + URO \implies OH^{-} + UROH^{+} \implies \begin{bmatrix} OEt \\ (CO)_{5}Cr - C - OH \\ A = Ph \end{bmatrix}^{-}$$

$$\downarrow -EtOH$$

$$(2)$$

$$J + 4 \implies (CO)_{5}Cr = C(OH)R + URO \implies [(CO)_{5}Cr - COR]^{-} UROH^{+}$$

$$C = B$$

Mit D_2O anstelle von H_2O bilden sich monodeuterierte Aldehyde. Offensichtlich wird die Reaktion über ein vorgelagertes Säure/Basen-Gleichgewicht zwischen Wasser und Urotropin (URO) durch Angriff von OH⁻ (bzw. OD⁻) an 1 eingeleitet, und die sp³-hybridisierte Zwischenstufe A unter Eliminierung von EtOH über das Acylat B und den Hydroxycarben-Komplex C in den Aldehyd 4 umgewandelt [7]. 2 liefert mit 1 keine stabilen Stickstoff-Ylid-Komplexe, wie dies von 1,4-Diazabicyclo[2.2.2]octan oder 1-Azabicyclo-[2.2.2]octan (Chinuclidin) [8] bekannt ist, und reagiert mit 1 generell erst nach Zugabe von Wasser. Anders als bei 1a-d führt beim Alkinylcarben-Komplex 1e die direkte Wechselwirkung des Urotropin-Stickstoffs mit dem Carbenrest zur Ausbildung einer stabilen C,N-Bindung. Läßt man auf 1e Wasser/ Urotropin einwirken, so entsteht ein verbrückter Bis(aminocarben)-Komplex 5 durch partiellen Abbau des Urotropin-Gerüsts. 5 wurde spektroskopisch als (β -Amino)vinylcarben-Komplex [9] identifiziert. Durch die Donorwirkung der Aminofunktion, die sich durch eine gehinderte Rotation um die C,N-Bindung [9e] bemerkbar macht (s.Experimenteller Teil), ist die Weiterreaktion mit Urotropin/Wasser stark verlangsamt, so daß 5 unter den Reaktionsbedingungen nicht weiter abgebaut wird.

Wir stellen uns vor, daß die Fragmentierung von 2 durch die Bildung eines Ylid-Komplexes D aus 1e und 2 eingeleitet wird, der nach Fragmentierung über E durch Addition von Wasser als Halbaminal F abgefangen wird. Aus letzterem entsteht durch spontane Eliminierung von Formaldehyd und anschließende Addition von 1 der zweikernige Komplex 5.

2. Kristallstruktur von 5

Von 5 wurde eine Kristallstrukturanalyse angefertigt, deren Ergebnis in Abb. 1 zusammengefaßt ist. Tabelle 1 enthält die Kristalldaten sowie Angaben zur Kristallstrukturanalyse; die Atomkoordinaten sind in Tab. 2 aufgeführt. Der für die Messung verwendete Einkristall wurde aus Dichlormethan/Petrolether gewonnen und enthielt Einschlüsse von Dichlormethan. Die monokline Einheitszelle besteht aus sechs Molekülen Dichlormethan und acht Molekülen 5; von letzteren besetzen jeweils zwei Moleküle unabhängige Positionen. Trotz ihrer unterschiedlichen Umgebungen weisen diese beiden unabhängigen Moleküle ähnliche Geometrien auf, die sich hauptsächlich durch die Konformationen der C-C-Einfachbindungen unterscheiden. Dies läßt sich an den intramolekularen $Cr \cdots Cr$

Abb 1. Molekülstruktur von 5; das Bild zeigt Molekül 1; ausgewählte Abstände (Å) (Mittelwerte): Cr=C 2.10(2); -C=O 1.15(2); C=C 1.38(3) (siehe 5); N(1) \cdots N(2) 2.399(9); N(3) \cdots N(4) 2.852(11).

Abständen verdeutlichen, wobei im Molekül 1 der $Cr(1) \cdot \cdot \cdot Cr(2)$ Abstand 10.550(3) Å beträgt, im Molekül 2 jedoch 11.115(3) Å. Alle übrigen Bindungsabstände und -winkel sind recht ähnlich, so daß sich die weitere Diskussion auf die gemittelten Strukturdaten beziehen kann. Das Molekül von 5 besitzt eine annähernd zweizählige Drehachse, die durch die zentrale Methylengruppe und den Mittelpunkt des $N(3) \cdots N(4)$ -Vektors verläuft. Der $N(3) \cdots N(4)$ -Abstand mit 2.852(11) Å ist deutlich länger als der Abstand $N(1) \cdots N(2)$ (2.399(9) Å), der dem mittleren $N \cdots N$ Abstand in Urotropin [11], (Urotropin)GaMe₃, (Urotropin)[GaMe₃]₂ [12] sowie von (Urotropin)I₂ und $(Urotropin)[I_2]_2$ [13] ähnlich ist. Die Stickstoffatome N(3) und N(4) sind planar koordiniert [die Summe der C-N-C-Winkel beträgt 359(2)° für N(3) und 360(3)° für N(4)]; es ergeben sich keine Hinweise auf eine Wechselwirkung zwischen den beiden Stickstoff-

TABELLE 1. Daten zur Kristallstrukturanalyse von 5

Formel: $C_{37}H_{32}O_{12}N_4Cr_2 \cdot 3/4CH_2Cl_2$, $M_r = 892.4$, Kristallgröße = 0.11 × 0.06 × 0.15 mm, a = 23.433(3), b = 12.688(1), c = 30.577(3) Å, $\beta = 110.29(1)^\circ$, V = 8527.1 Å³, $d_{ber} = 1.39$ g cm⁻³, $\mu = 56.8$ cm⁻¹, F(000) = 3660 e, Z = 8, monoklin, Raumgruppe $P2_1/a$ (Nr. 14), Enraf-Nonius CAD4-Diffraktometer, $\lambda = 1.54178$ Å, Meßmethode $\omega - 2\theta$, 18722 gemessene Reflexe $(\pm h, + k, + l)$, $[(\sin \theta)/\lambda]_{max} = 0.63$ Å⁻¹, empirische Absorptionskorrektur, 17534 unabhängige und 8687 beobachtete Reflexe $[I > 2\sigma(I)]$, 1018 verfeinerte Parameter, R = 0.118, $R_w = 0.073$ [$w = 1/\sigma^2$ (F_0)], max. Restelektronendichte 0.97 e Å⁻³; Schweratom-Methode, H-Atom Positionen berechnet und nicht verfeinert. Das Kohlenstoffatom des um das Symmetriezentrum liegenden CH₂Cl₂-Moleküls konnte wegen Fehlordnung um den Cl···Cl Vektor nicht lokalisiert werden.

atomen. Die Chromatome sind oktaedrisch koordiniert und die Geometrie der $(CO)_5$ Cr=C-Gruppen entspricht der anderer Komplexe mit solcher Struktureinheit.

3. Experimenteller Teil

Umsetzungen und Aufarbeitungen erfolgten unter Inertgas. Alle Lösungsmittel waren trocken und frisch destilliert. ¹H- und ¹³C-NMR: Bruker WM 300 (Zuordnung durch DR- bzw. BB-, DEPT-, NOE- und "Gated-decoupling"-Messungen). IR: Digilab FTS 45. MS: Finnigan MAT 312. Elementaranalysen: Perkin-Elmer 240 Elemental Analyser. Säulenchromatographie: Merck-Kieselgel 100; Dünnschichtchromatographie: Merck DC-Alufolien Kieselgel 60 F 254. Petroletherfraktion: 40–60°C. R_f-Werte beziehen sich jeweils auf DC-Tests.

3.1. Hydrolyse von 1a mit Wasser / Urotropin unter Bildung von Benzaldehyd (4a) und Pentacarbonyl(hexamethylentetramin)chrom (3)

326 mg (1.00 mmol) Pentacarbonyl(1-ethoxy-2phenyl-1-ethyliden)chrom (1a), 140 mg (1.00 mmol) Urotropin (2) und 9 mg Hexamethylbenzol als interner Standard in 2 ml THF werden in einem luftdicht verschraubbaren 5-ml-Glasgefäß mit 20 mg (1.10 mmol) H_2O bzw. D_2O lebhaft gerührt. Die zunächst rote Suspension wird heller. Nach 24 h, 20°C ist 2 vollständig in Lösung gegangen. Man engt ein durch Überleiten von Stickstoff und versetzt mit 3 ml Petrolether. Dabei scheiden sich gelbe Kristalle von 3 ab (332 mg, 98%, Zers. ab 135°C). Die Mutterlauge enthält 4a. Laut ¹H-NMR- und GC-Analyse liegen die Ausbeuten an PhCHO bzw. PhCDO über 90%.

3: ¹H-NMR (C_6D_6): $\delta = 4.20$ (6H, s, 3 NCH₂N); 3.85 (6H, s, 3 NCH₂N). ¹³C-NMR (CDCl₃/CS₂ 2:1): $\delta = 219.1$ und 213.1 [1:4, *trans*- und *cis*-CO, Cr(CO)₅]; 81.9 und 72.6 (je 3 CH₂). IR (Hexan): cm⁻¹ (%), 2067.7 (4), 1936.5 (100), 1925.0 (20) [(C=O)]. Anal. Gef.: C, 39.52; H, 3.67; N, 16.87. C₁₆H₁₂N₄CrO₅ (332.2) ber.: C, 39.72; H, 3.64; N, 16.86%.

4a: ¹H-NMR (C_6D_6): $\delta = 9.70$ (1H, s, HCO); 7.56, 7.15 und 7.05 (2:1:2, "d", "t", "t", C_6H_5).

3.2. Hydrolyse von 1b-d mit Wasser / Urotropin unter Bildung von Aldehyden 4b-d und 3

Die Komplexe **1b–d** [10] werden wie oben mit Wasser/Urotropin hydrolysiert und ergeben **3** und **4b** [92%, ¹H-NMR (C_6D_6): $\delta = 9.35$ (1H, d, ³J = 7.5 Hz, CHO); 7.05 (5H, m, C_6H_5); 6.80 (1H, d, ³J = 16.2 Hz, *trans*-CH=C-CO); 6.50 (1H, dd, ³J = 16.2 und 7.5 Hz, C=CH-CO)], **4c** [91%, ¹H-NMR (C_6D_6): $\delta = 9.80$ (1H, s, CHO); 7.10, 6.95 und 6.75 (1:1:1, je dd, Thienylrest)], bzw. **4d** [90%, ¹H-NMR (C_6D_6): $\delta = 9.50$

^a Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57618, der Autoren und des Zeitschriftenzitats angefordert werden.

TABELLE 2. Atomkoordinaten und thermische Parameter (${\rm \AA}^2$) von 5

Atom		v	7	11 a	Atom	×		7	1/ a
	A 0.00(0(1)	,	2 0.0002(1)			A 0.0417(4)	y 0.00(1(0)	2 0 0001(0)	
Cr(1)	-0.0969(1)	-0.2692(1)	0.3003(1)	0.066(2)	C(19)	-0.0417(4)	0.2864(8)	0.2091(3)	0.057(8)
Cr(2)	0.1889(1)	0.3664(1)	0.4613(1)	0.059(1)	C(20)	0.0367(4)	0.319/(7)	0.2804(3)	0.052(8)
Cr(3)	0.2521(1)	-0.0499(2)	0.0630(1)	0.071(2)	C(21)	-0.0698(3)	0.2919(7)	0.2/45(3)	0.050(8)
Cr(4)	0.0678(1)	0.6991(2)	0.1480(1)	0.071(2)	(22)	0.0121(4)	0.2855(8)	0.3507(4)	0.043(8)
C(1)	0.1576(2)	0.6069(4)	0.3193(2)	0.211(6)	C(23)	-0.033/(4)	0.242(1)	0.3/06(4)	0.053(9)
C(2)	0.2712(3)	0.5994(7)	0.3812(3)	0.37(1)	C(24)	-0.0491(5)	0.141(1)	0.3657(4)	0.07(1)
CI(3)	0.0094(3)	0.5638(5)	0.4734(2)	0.306(9)	C(25)	-0.0932(7)	0.100(1)	0.3835(5)	0.11(1)
O(1)	-0.1983(4)	-0.4243(7)	0.2819(4)	0.15(1)	C(26)	-0.1184(7)	0.172(2)	0.4071(6)	0.13(2)
O(2)	-0.0111(4)	-0.4527(7)	0.3195(4)	0.13(1)	C(27)	-0.1047(8)	0.270(1)	0.4109(7)	0.13(2)
O(3)	-0.1043(4)	-0.2841(8)	0.2006(3)	0.120(9)	C(28)	-0.0607(6)	0.306(1)	0.3934(5)	0.09(1)
O(4)	-0.1920(4)	-0.0940(7)	0.2765(4)	0.12(1)	C(29)	0.0700(4)	0.3172(7)	0.3817(4)	0.052(8)
0(5)	-0.09/9(5)	-0.264(1)	0.3969(4)	0.17(1)	C(30)	0.1034(4)	0.29/0(8)	0.4284(3)	0.045(8)
O(6)	0.0199(3)	-0.1424(6)	0.3470(3)	0.081(7)	α_{31}	0.0950(4)	0.1942(9)	0.4910(4)	0.07(1)
O(7)	0.3106(3)	0.4719(6)	0.4963(3)	0.110(8)	C(32)	0.0514(5)	0.119(1)	0.4966(4)	0.11(1)
0(8)	0.1759(5)	0.421(1)	0.5518(3)	0.18(1)	C(33)	0.2281(5)	0.242(1)	0.4869(6)	0.14(2)
O(9)	0.1263(4)	0.5717(7)	0.4234(4)	0.16(1)	C(34)	0.2043(6)	0.343(1)	0.4097(4)	0.10(1)
O(10)	0.2143(4)	0.3291(9)	0.3743(4)	0.14(1)	C(35)	0.1499(5)	0.495(1)	0.4373(4)	0.08(1)
O(11)	0.2594(4)	0.1703(8)	0.5009(6)	0.25(2)	C(36)	0.1801(6)	0.393(1)	0.5161(4)	0.11(1)
O(12)	0.0725(3)	0.2279(6)	0.4447(2)	0.068(6)	C(37)	0.2636(4)	0.4319(8)	0.4834(4)	0.07(1)
O(13)	0.3384(4)	-0.1956(8)	0.0436(5)	0.17(1)	C(38)	0.3051(5)	-0.142(1)	0.0496(5)	0.10(1)
O(14)	0.2622(5)	0.1159(8)	-0.0080(4)	0.15(1)	C(39)	0.2569(6)	0.054(1)	0.0169(5)	0.08(1)
0(15)	0.3612(4)	0.0535(9)	0.1336(4)	0.17(1)	C(40)	0.3194(5)	0.014(1)	0.1071(5)	0.10(1)
O(16)	0.2425(5)	-0.1960(8)	0.1393(4)	0.14(1)	C(41)	0.2446(6)	-0.141(1)	0.1101(5)	0.09(1)
O(17)	0.1565(3)	-0.1768(7)	-0.0091(3)	0.114(9)	C(42)	0.1908(5)	-0.1251(9)	0.0186(4)	0.08(1)
O(18)	0.1443(3)	0.0997(6)	0.0573(3)	0.084(7)	C(43)	0.1945(5)	0.0503(9)	0.0815(4)	0.061(9)
O(19)	-0.0130(4)	0.8727(7)	0.1598(4)	0.13(1)	C(44)	0.1170(5)	0.084(1)	0.0100(5)	0.10(1)
0(20)	-0.036/(4)	0.5853(9)	0.0768(4)	0.16(1)	C(45)	0.0624(5)	0.143(1)	-0.0091(4)	0.12(1)
O(21)	0.0329(4)	0.5774(9)	0.2203(4)	0.14(1)	C(46)	0.2086(4)	0.0788(8)	0.1288(4)	0.057(9)
O(22)	0.1810(4)	0.7883(8)	0.2202(3)	0.15(1)	C(47)	0.1/53(4)	0.1294(8)	0.1513(3)	0.050(8)
0(23)	0.0911(4)	0.8385(7)	0.0758(3)	0.102(9)	C(48)	0.1088(4)	0.1600(9)	0.1302(4)	0.056(9)
U(24)	0.1362(3)	0.536/(6)	0.1084(3)	0.073(7)	C(49)	0.0009(5)	0.0848(9)	0.119/(4)	0.08(1)
N(1) N(2)	0.0220(3)	0.2030(7)	0.2304(3)	0.055(7)	C(50)	0.0030(0)	0.107(1)	0.1008(0)	0.10(1)
N(2)	-0.0819(3)	0.2408(6)	0.2303(2)	0.045(6)	C(51)	-0.0120(3)	0.200(1)	0.0904(5)	0.10(1)
N(3) N(4)	-0.0092(3)	0.0988(0)	0.2502(2) 0.2052(2)	0.049(6)	C(52)	0.0312(0) 0.0024(5)	0.288(1) 0.264(1)	0.1003(4) 0.1208(4)	0.09(1)
IN(4) N(5)	-0.0034(3)	0.2919(0) 0.2458(6)	0.3033(3)	0.046(0)	C(53)	0.0924(3) 0.1625(4)	0.204(1) 0.1772(9)	0.1200(4)	0.07(1)
N(5)	0.1070(3)	0.2436(0)	0.2000(3)	0.052(0)	C(54)	0.1035(4)	0.1773(8)	0.2260(4) 0.2216(4)	0.00(1)
N(0)	0.2871(3)	0.2293(0)	0.2012(3) 0.1074(2)	0.035(0)	C(56)	0.2000(4)	0.1382(8)	0.2210(4)	0.059(8)
IN(7) NI(9)	0.2000(3)	0.1030(0)	0.1974(2) 0.2267(2)	0.040(0)	C(50)	0.2303(4) 0.1934(4)	0.2190(8)	0.2320(3)	0.056(8)
C(1)	-0.1591(6)	-0.365(1)	0.2207(5)	0.049(0)	C(58)	0.1854(4) 0.2855(4)	0.3370(8)	0.2320(3) 0.2474(3)	0.055(8)
C(1)	-0.0424(5)	-0.3797(9)	0.3123(5)	0.09(1)	C(50)	0.2033(4)	0.4517(8)	0.2474(3) 0.1918(3)	0.046(8)
C(2)	-0.1004(5)	-0.276(1)	0.3125(3) 0.2387(4)	0.09(1)	C(60)	0.2002(4) 0.2473(4)	0.458(1)	0.1518(5)	0.052(9)
C(4)	-0.1558(5)	-0.159(1)	0.2557(4) 0.2851(4)	0.08(1)	C(61)	0.2572(4)	0.3693(9)	0.1320(4)	0.060(9)
C(5)	-0.0954(6)	-0.264(1)	0.3599(4)	0.00(1)	C(62)	0.2976(5)	0.378(1)	0.1300(4) 0.1108(4)	0.08(1)
C(6)	-0.0301(4)	-0.1530(9)	0.3377(4)	0.055(9)	C(62)	0.2220(5) 0.3231(5)	0.578(1)	0.1097(4)	0.09(1)
C(7)	0.0301(4)	-0.2177(9)	0.3860(5)	0.000()	C(64)	0.3231(3) 0.3144(5)	0.168(1)	0.1342(5)	0.09(1)
C(8)	0.0865(8)	-0.178(1)	0.4255(6)	0.29(2)	C(65)	0.2775(5)	0.550(1)	0.1605(4)	0.07(1)
C(9)	-0.0354(4)	-0.0655(9)	0.2805(3)	0.054(8)	C(66)	0.1594(5)	0.5182(8)	0.1850(4)	0.060(9)
C(10)	0.0004(4)	0.0083(8)	0.2303(3)	0.045(8)	C(67)	0.1271(4)	0.5749(8)	0.1448(4)	0.052(8)
C(11)	0.0735(4)	- 0.0099(8)	0.3048(4)	0.051(9)	C(68)	0,1155(5)	0.580(1)	0,0632(4)	0.09(1)
C(12)	0.1057(5)	~ 0.0796(9)	0.2898(4)	0.07(1)	C(69)	0.1119(7)	0.505(1)	0.0295(4)	0.14(2)
C(13)	0.1675(5)	-0.084(1)	0.3105(5)	0.10(1)	C(70)	0.0172(5)	0.808(1)	0.1555(5)	0.10(1)
C(14)	0.1985(4)	-0.031(1)	0.3483(5)	0.10(1)	C(71)	0.0028(5)	0.629(1)	0.1030(5)	0.10(1)
C(15)	0.1666(5)	0.038(1)	0.3661(4)	0.09(1)	C(72)	0.0465(5)	0.620(1)	0.1931(4)	0.09(1)
C(16)	0.1043(5)	0.0530(9)	0.3440(4)	0.07(1)	C(73)	0.1365(6)	0.755(1)	0.1938(4)	0.09(1)
C(17)	0.0330(4)	0.1535(8)	0.2401(3)	0.050(8)	C(74)	0.0843(5)	0.784(1)	0.1022(4)	0.07(1)
C(18)	-0.0728(4)	0.1304(8)	0.2357(4)	0.057(8)	C(75)	0.217(1)	0.682(2)	0.370(1)	0.13(1)

^a $U_{eq} = 1/3\sum_i \sum_j U_{ij} a^*_i a^*_j (\boldsymbol{a}_1 \mathbf{i} \cdot \boldsymbol{a}_j).$

(1H, d, ${}^{3}J = 7$ Hz, CHO); 6.95, 6.89 und 6.75 (1:1:1H, je dd, Thienylrest); 6.95 (1H, d, ${}^{3}J = 16$ Hz, *trans*-CH=C-CO); 6.60 (1H, dd, ${}^{3}J = 16$ und 7 Hz, C=CH-CO)].

3.3. 3,5-Bis[pentacarbonyl(1-ethoxy-3-phenyl-2-propen-3yl-yliden)chrom]-1,3,5,7-tetraza-bicyclo[3.3.1]nonan (5)

350 mg (1.00 mmol) 1e und 140 mg (1.00 mmol) 2 in 3 ml THF und 20 mg Wasser wurden in einem luftdicht verschraubbaren 5-ml-Gewindefläschchen 12 h bei 20°C gerührt. Man chromatographiert an Kieselgel (Säule 15×2 cm) und gewinnt mit Dichlormethan eine rote Fraktion und daraus 5 (695 mg, 84%, rote Kristalle aus Dichlormethan/Petrolether, Zers. ab 119°C). Diese enthalten Dichlormethan, das jedoch durch mehrmaliges Lösen in Ether und Eindampfen der Lösung entfernt werden kann. 5 zeigt temperaturabhängige NMR-Spektren. ¹H-NMR (CDCl₃, 294 K): $\delta = 7.42$ und 7.14 (6:4H, jeweils verbreitert, 2 C_6H_5); 6.47 (2H, s, 2 CH₂); 5.29 (2H, s, CH₂Cl₂); 4.78 und 4.21 (4:6H, jeweils verbreitert, jeweils 4 diastereotope NCH₂ und A-Teil zweier OCH₂); 4.21 (2H, s, NCH₂); 4.12 (2H, breit, B-Teil zweier diastereotoper OCH₂); 0.59 (6H, t, CH₃, Et). ¹H-NMR (CDCl₃/CS₂ 2:1, 243 K): δ = 7.43, 7.26 und 7.12 (4:2:4H; jeweils m, 2 C_6H_5); 6.41 (2H, s, 2 =CH); 4.96 (4H, d, ${}^{2}J = 13$ Hz, diastereotope NCH_{2} ; 4.81 (4H, d, ²J = 13 Hz, diastereotope NCH_{2}); 4.42 und 4.02 (je 2H, je dq, ${}^{2}J = 10$ Hz, ${}^{3}J = 7$ Hz, 2 diastereotope OCH₂); 4.27 (2H, s, NCH₂N); 0.50 (6H, t, ${}^{3}J = 7$ Hz, 2 CH₃, Et). 13 C-NMR (CDCl₃, 294 K): $\delta = 305.2$ (2 Cr=C); 224.1, 218.7 [1:4, trans- und cis-CO, 2 Cr(CO)₅]; 151.9 [2 =C(Ph)N]; 135.6 (2 *i*-C, 2 C₆H₅); 129.6, 128.9, 128.3 (2:4:4, jeweils CH, 2 C₆H₅); 119.5 (2 =CH); 73.9 (2 OCH₂); 69.0 (5 NCH₂); 14.1 (2 CH₃, Et). ¹³C-NMR (CDCl₃/CS₂, 243 K): $\delta = 303.1$ (2 Cr=C); 223.7, 218.2 [1:4, trans- und cis-CO, 2 Cr(CO)₅]; 151.5 [2 =C(Ph)N]; 134.9 (2 *i*-C, C₆H₅); 129.4, 129.0, 128.9, 128.4, 126.9 (2:2:2:2:2, jeweils CH, 2 C₆H₅); 118.7 (2 =CH); 73.4 (2 OCH₂); 68.6, 68.5, 68.5 (1:2:2, 5 NCH₂); 13.9 (2 CH₃, Et). IR (Hexan): cm⁻¹ (%), 2050.3 (20), 1932.7 (100) [je [(C=O)]; IR (KBr): 2046.5, 1901.3. Anal. Gef.: C, 53.79; H, 3.85; N, 6.48. C₃₇H₃₂-Cr₂N₄O₁₂ (828.7) ber.: C, 53.63; H, 3.89; N, 6.76%.

Literatur

- 1 R. Aumann und P. Hinterding, Chem. Ber., 126 (1993) 421.
- 2 (a) C.P. Casey und W.R. Brunsvold, J. Organomet. Chem., 102 (1975) 183; (b) K.H. Dötz, B. Fügen-Köster und D. Neugebauer, J. Organomet. Chem., 182 (1979) 489.
- 3 C.P. Casey, R.A. Boggs und R.L. Anderson, J. Am. Chem. Soc., 94 (1972) 8947.
- 4 R. Aumann und H. Heinen, Chem. Ber., 120 (1987) 1297.
- 5 (a) C.M. Lukehart und J.V. Zeile, J. Organomet. Chem., 97 (1975) 421; (b) R. Aumann, E. Kuckert, C. Krüger und K. Angermund, Angew. Chem., 99 (1987) 587; Angew. Chem., Int. Ed. Engl., 26 (1987) 563.
- 6 (a) E.O. Fischer und S. Riedmüller, *Chem. Ber.*, 107 (1974) 915;
 (b) R. Aumann, J. Schröder und H. Heinen, *Chem. Ber.*, 123 (1990) 1369; (c) R. Aumann und J. Schröder, *Chem. Ber.*, 123 (1990) 2053.
- 7 E.O. Fischer und A. Massböl, Chem. Ber., 100 (1967) 2445.
- 8 F.R. Kreißl und E.O. Fischer, Chem. Ber., 107 (1974) 183.
- 9 (a) E.O. Fischer und F.R. Kreissl, J. Organomet. Chem., 35 (1972) C47; (b) E.O. Fischer und H.J. Kalder, J. Organomet. Chem., 131 (1977) 57; (c) M. Deutsch, R. Lackmann, F. Stein und A. de Meijere, Synlett., 28 (1991) 367; (d) M. Deutsch, F. Stein, R. Lackmann, E. Pohl, R. Herbst-Irmer und A. de Meijere, Chem. Ber., 125 (1992) 2051; (e) R. Aumann und P. Hinterding, Chem. Ber., 123 (1990) 611.
- 10 R. Aumann und H. Heinen, Chem. Ber., 120 (1987) 537.
- 11 L.N. Becka, D.W.J. Cruickshank, Proc. Roy. Soc., 273A (1963) 435; V. Schomaker und P.A. Schaffer jr., J. Am. Chem. Soc., 69 (1947) 1555.
- 12 H. Krause, K. Sille, H.-D. Hausen und J. Weidlein, J. Organomet. Chem., 235 (1982) 253.
- 13 H. Pritzkow, Acta Crystallogr., Sect. B, 31 (1975) 1589.